Intro to Survival Analysis

Learn the key tools necessary to learn Survival Analysis in this brief introduction to this topic.

Survival Analysis sounds like it should have a very narrow focus, but in fact, it's an incredibly useful set of statistic tools that apply well in many fields.

The defining feature of these models is that the dependent variable is the time until an event occurs. They were originally developed for mortality events--understanding the relationship between predictors and how long after a treatment patients survive.

But it turns out you can adapt them to many other time-to-event outcomes, such as customer churn, restaurant closings, successful completion of training for guide dogs, length of unemployment, defoliation of plants, and metal fatigue. The outcomes do not necessarily have to be “bad” events or anything to do with surviving.

Join Steve Simon as he introduces you to some fundamental tools and concepts within Survival Analysis.

1.

See and learn how to interpret a variety of Kaplan-Meier curves, the fundamental graphical display for survival data

2.

The underlying calculations of a Kaplan-Meier curve

3.

An advanced application of competing risks analysis using a Political Science example of duration of leadership in the world’s countries